Senin, 17 Desember 2007

Sistem Inferensi Fuzzy

Sistem Inferensi Fuzzy

Sistem Inferensi Fuzzy (Fuzzy Inference System/FIS) disebut juga fuzzy inference engine adalah sistem yang dapat melakukan penalaran dengan prinsip serupa seperti manusia melakukan penalaran dengan nalurinya.

Terdapat beberapa jenis FIS yang dikenal yaitu Mamdani, Sugeno dan Tsukamoto. FIS yang paling mudah dimengerti, karena paling sesuai dengan naluri manusia adalah FIS Mamdani. FIS tersebut bekerja berdasarkan kaidah-kaidah linguistik dan memiliki algoritma fuzzy yang menyediakan sebuah aproksimasi untuk dimasuki analisa matematik.

Proses dalam FIS ditunjukan pada Gambar 3. Input yang diberikan kepada FIS adalah berupa bilangan tertentu dan output yang dihasilkan juga harus berupa bilangan tertentu. Kaidah-kaidah dalam bahasa linguistik dapat digunakan sebagai input yang bersifat teliti harus dikonversikan terlebih dahulu, lalu melakukan penalaran berdasarkan kaidah-kaidah dan mengkonversi hasil penalaran tersebut menjadi output yang bersifat teliti.



Gambar 4. Proses dalam FIS

II.3 Metode Mamdani

Metode Mamdani sering juga dikenal dengan nama Metode Max-Min. Metode ini diperkenalkan oleh Ebrahim Mamdani pada tahun 1975. Untuk memperoleh output, diperlukan 4 tahapan yaitu :

1. Pembentukan himpunan fuzzy;

pada metoda mamdani, baik variabel input maupun variabel output dibagi menjadi satu atau lebih himpunan fuzzy.

2. Aplikasi fungsi impliksi (aturan);

pada metode mamdani, fungsi implikasi yang digunakan adalah MIN

3. Komponen aturan;

Pada tahapan ini sistem terdiri dari beberapa aturan, maka inferensi diperoleh dari kumpulan dan korelasi antar aturan. Ada 3 metode yang digunakan dalam melakukan inferensi sistem fuzzy, yaitu : max, additive dan probabilistik OR.

Pada metode max, solusi himpunan fuzzy diperoleh dengan cara mengambil nilai maksimum aturan, kemudian menggunakannya untuk memodifikasi daerah fuzzy, dan mengaplikasikanya ke output dengan menggunakan operator OR (union). Secara umum dapat ditulis

µdf (x­i) max (µdf(xi,) µkf(x­i))

4. Penegasan (defuzzyfikasi)

Input dari proses defuzzyfikasi adalah suatu himpunan fuzzy yang diperoleh dari komposisi aturan-aturan fuzzy, sedangkan output yang dihasilkan merupakan suatu bilangan pada domain himpunan fuzzy tersebut. Jika diberikan suatu himpunan fuzzy dalam range tertentu, maka harus dapat di ambil suatu nilai crisp tertentu sebagai output. Defuzzyfikasi pada metode mamdani untuk semesta diskrit menggunakan persamaan

z = ∑ z­j µ(zj)/∑ µ(zj)

Sistem Inferensi Fuzzy

Sistem Inferensi Fuzzy

Sistem Inferensi Fuzzy (Fuzzy Inference System/FIS) disebut juga fuzzy inference engine adalah sistem yang dapat melakukan penalaran dengan prinsip serupa seperti manusia melakukan penalaran dengan nalurinya.

Terdapat beberapa jenis FIS yang dikenal yaitu Mamdani, Sugeno dan Tsukamoto. FIS yang paling mudah dimengerti, karena paling sesuai dengan naluri manusia adalah FIS Mamdani. FIS tersebut bekerja berdasarkan kaidah-kaidah linguistik dan memiliki algoritma fuzzy yang menyediakan sebuah aproksimasi untuk dimasuki analisa matematik.

Proses dalam FIS ditunjukan pada Gambar 3. Input yang diberikan kepada FIS adalah berupa bilangan tertentu dan output yang dihasilkan juga harus berupa bilangan tertentu. Kaidah-kaidah dalam bahasa linguistik dapat digunakan sebagai input yang bersifat teliti harus dikonversikan terlebih dahulu, lalu melakukan penalaran berdasarkan kaidah-kaidah dan mengkonversi hasil penalaran tersebut menjadi output yang bersifat teliti.

Gambar 4. Proses dalam FIS

II.3 Metode Mamdani

Metode Mamdani sering juga dikenal dengan nama Metode Max-Min. Metode ini diperkenalkan oleh Ebrahim Mamdani pada tahun 1975. Untuk memperoleh output, diperlukan 4 tahapan yaitu :

1. Pembentukan himpunan fuzzy;

pada metoda mamdani, baik variabel input maupun variabel output dibagi menjadi satu atau lebih himpunan fuzzy.

2. Aplikasi fungsi impliksi (aturan);

pada metode mamdani, fungsi implikasi yang digunakan adalah MIN

3. Komponen aturan;

Pada tahapan ini sistem terdiri dari beberapa aturan, maka inferensi diperoleh dari kumpulan dan korelasi antar aturan. Ada 3 metode yang digunakan dalam melakukan inferensi sistem fuzzy, yaitu : max, additive dan probabilistik OR.

Pada metode max, solusi himpunan fuzzy diperoleh dengan cara mengambil nilai maksimum aturan, kemudian menggunakannya untuk memodifikasi daerah fuzzy, dan mengaplikasikanya ke output dengan menggunakan operator OR (union). Secara umum dapat ditulis

µdf (x­i) max (µdf(xi,) µkf(x­i))

4. Penegasan (defuzzyfikasi)

Input dari proses defuzzyfikasi adalah suatu himpunan fuzzy yang diperoleh dari komposisi aturan-aturan fuzzy, sedangkan output yang dihasilkan merupakan suatu bilangan pada domain himpunan fuzzy tersebut. Jika diberikan suatu himpunan fuzzy dalam range tertentu, maka harus dapat di ambil suatu nilai crisp tertentu sebagai output. Defuzzyfikasi pada metode mamdani untuk semesta diskrit menggunakan persamaan

z = ∑ z­j µ(zj)/∑ µ(zj)

Himpunan Fuzzy

Logika Fuzzy

Himpunan Crisp dan Himpunan Fuzzy

Himpunan Crisp A didefinisikan oleh item-item yang ada pada himpunan itu. Jika a A, maka nilai yang berhubungan dengan a adalah 1. Namun, jika a A, maka nilai yang berhubungan dengan a adalah 0. Notasi A = {x | P(x)} menunjukkan bahwa A berisi item x dengan P (x) benar. Jika XA merupakan fungsi karakteristik A dan properti P, dapat dikatakan bahwa P(x) benar, jika dan hanya jika XA(x) = 1.

Himpunan fuzzy didasarkan pada gagasan untuk memperluas jangkauan fungsi karakteristik sedemikian hingga fungsi tersebut akan mencakup bilangan real pada interval [0,1]. Nilai keanggotaannya menunjukkan bahwa suatu item m suatu ruang output. Seperti pada gambar dibawahatu ruang outputtidak hanya bernilai benar atau salah. Nilai 0 menunjukkan salah, nilai 1 menunjukkan benar, dan masih ada nilai-nilai yang terletak antara benar dan salah.

Seseorang dapat masuk dalam 2 himpunan berbeda, Muda dan Parobaya, Parobaya dan Tua. Seberapa besar eksistensinya dalam himpunan tersebut dapat dilihat pada nilai keanggotaannya. Gambar 3 menunjukkan himpunan fuzzy untuk variabel umur.

Gambar 3. Grafik pengelompokan umur ke himpunan kategori usia

dengan logika fuzzy

Pada Gambar 3 dapat dilihat bahwa :

· Seseorang yang berumur 40 tahun, termasuk dalam himpunan muda dengan µmuda [40] = 0,25; namun umur tersebut juga termasuk dalam himpunan parobaya dengan µparobaya [40] = 0,5.

· Seseorang yang berumur 50 tahun, termasuk dalam himpunan tua dengan µtua [50] = 0,25, namun umur tersebut juga termasuk dalam himpunan parobaya dengan µparobaya [50] = 0,5.

Pada himpunan crisp, nilai keanggotaannya hanya ada dua kemungkinan, yaitu antara 0 atau 1, sedangkan pada himpunan fuzzy nilai keanggotaannya pada rentang antara 0 sampai 1. Apabila x memiliki nilai keanggotaan fuzzy µA[x] = 0, berarti x tidak menjadi anggota himpunan A, juga apabila x memiliki nilai keanggotaan fuzzy µA[x] = 1 berarti x menjadi anggota penuh pada himpunan A.

Istilah fuzzy logic memiliki berbagai arti. Salah satu arti fuzzy logic adalah perluasan crisp logic, sehingga dapat mempunyai nilai antara 0 sampai 1. Pertanyaan yang akan timbul adalah, bagaimana dengan operasi NOT, AND dan OR-nya? Ada banyak solusi untuk masalah tersebut. Salah satunya adalah:

- operasi NOT x diperluas menjadi 1 - µx,

- x OR y diperluas menjadi max(µ­x,µy)

- x AND y diperluas menjadi min(µ­x,µy).

Dengan cara ini, operasi dasar untuk crisp logic tetap sama. Sebagai contoh :

- NOT 1 = 1 – 1 = 0

- 1 OR 0 = max (1,0) = 1

- 1 AND 0 = min (1,0) = 0,

dan ini diperluas untuk logika fuzzy. Sebagai contoh :

- NOT 0,7 = 1 – 0,7 = 0,3

- 0,3 OR 0,1 = max (0,3, 0,1)

- 0,8 AND 0,4 = min (0,8, 0,4) = 0,4.

Kaidah

Secara prinsip/naluriah, kaidah yang dapat digunakan mirip dengan kaidah yang biasa dipakai dalam penentuan jumlah produksi suatu barang, seperti :

- Jika permintaan turun dan persediaan banyak maka produksi barang berkurang

- Jika permintaan turun dan persediaan sedikit maka produksi barang berkurang.

- Jika permintaan naik dan persediaan banyak maka produksi barang naik.

- Jika permintaan naik dan persediaan sedikit maka produksi barang naik.

Kaidah-kiadah tersebut adalah dalam bahasa linguistik dan bukan bahasa matematis. Kaidah-kaidah tersebut menggunakan kata-kata yang tidak mencerminkan ketelitian seperti turun, naik, banyak, sedikit, berkurang, dan bertambah. Hal ini berbeda dengan bahasa matematis yang selalu mensyaratkan ketelitian yaitu dengan angka-angka.

Fungsi Keanggotaan

Fungsi keanggotaan (membership function) adalah suatu kurva yang menunjukkan pemetaan titik input data kedalam nilai keanggotaanya (sering juga disebut dengan derajat keanggotaan) yang memiliki interval antara 0 sampai 1.

Aplikasi Logika Fuzzy

INTISARI

Paper ini adalah sebuah pemaparan tentang logika fuzzy (fuzy logic). Logika fuzzy telah lama dikenal dan digunakan dalam berbagai bidang oleh para ahli dan insinyur. Penggunaan logika fuzzy pada awalnya digunakan untuk beberapa bidang, seperti sistem diagnosa penyakit (dalam bidang kedokteran); pemodelan sistem pemasaran, riset operasi (dalam bidang ekonomi); kendali kualitas air, prediksi adanya gempa bumi, klasifikasi dan pencocokan pola (dalam bidang teknik). Penggunaan logika fuzzy dalam bidang sistem daya (power system) juga sudah dilakukan, antara lain dalam analisis kemungkinan, prediksi dan pengaturan beban, identifikasi gangguan pada generator dan penjadwalan pemeliharaan generator. Dalam paper ini dijelaskan aplikasi logika fuzzy dalam mengkaji pengaruh induksi medan magnet pada kesehatan manusia. Hasil aplikasi logika fuzzy menunjukkan tidak adanya pengaruh yang signifikan dari medan magnet tersebut.

Kuliah Logika Fuzzy

himpunan fuzzy
operasi fuzzy
inferensi fuzzy
sistem fuzzy